
© 2ndQuadrant Limited 2009

Simon Riggs
2nd Quadrant
simon@2ndQuadrant.
com

Replication
Replication
Replication

© 2ndQuadrant Limited 2009

Simon Riggs
2nd Quadrant
simon@2ndQuadrant.
com

Replication
Replication
Replication

© 2ndQuadrant Limited 2009

Topics

 Streaming Replication
 Hot Standby
 Futures
 Scorecard
 Conclusion

© 2ndQuadrant Limited 2009

File-based Log Shipping (8.2/8.3)

PRIMARY

STANDBY

wal_buffers

postgres

archive

archiver

pg_xlog

pg_xlog

startup pg_standby Flow of WAL

© 2ndQuadrant Limited 2009

Sync Replication [Stream mode]
PRIMARY

STANDBY

wal_buffers

postgres

pg_xlog

startup

wal sender

wal receiver

Flow of WAL

 “Intuitive”
design

© 2ndQuadrant Limited 2009

Sync Replication [Archiving]
PRIMARY

STANDBY

wal_buffers

postgres

pg_xlog

pg_xlog

startup

wal sender

wal receiver

 Optional
additional
archiving in
streaming
mode

archive

archiver

Flow of WAL

© 2ndQuadrant Limited 2009

Sync Replication [As at 1/11]
PRIMARY

STANDBY

wal_buffers

postgres

pg_xlog

pg_xlog

startup

wal sender

wal receiver

archive

archiver

Flow of WAL

archiver
archive

pg_standby

© 2ndQuadrant Limited 2009

Sync Replication [File mode]
PRIMARY

STANDBY

wal_buffers

postgres

archive

archiver

pg_xlog

pg_xlog

startup pg_standby

 Starting
mode

Flow of WAL

© 2ndQuadrant Limited 2009

Sync Replication [Switching]
PRIMARY

STANDBY

wal_buffers

postgres

archive

archiver

pg_xlog

pg_xlog

startup pg_standby

 Archiving
stops at next
log switch
following start
of streaming

wal sender

wal receiver

Flow of WAL

© 2ndQuadrant Limited 2009

Sync Replication [Stream mode]
PRIMARY

STANDBY

wal_buffers

postgres

pg_xlog

pg_xlog

startup

wal sender

wal receiver

Flow of WAL

© 2ndQuadrant Limited 2009

Hot Standby

PRIMARY

postgres

startup
DB

STANDBY
User

 Run queries
while still in
recovery

© 2ndQuadrant Limited 2009

Problem #1: Transactions

 How do we run transactions when we can't
allocate new TransactionIds? (Xids)

 Florian Pflug solved the transaction problem in
8.3: Read-only transactions never allocate Xids

 Florian's early analysis of these problems made
an eventual solution feasible

© 2ndQuadrant Limited 2009

Problem #2: Conflicts

 Recovery may need to do things like
ALTER TABLE. Standby queries could be
reading the table we wish to alter.

 Recovery needs to clean “old” data out, when
primary system runs HOT or VACUUM. Standby
queries might need to see data even after it has
been removed

 Recovery may need to drop tablespaces or
databases that we are currently using.

© 2ndQuadrant Limited 2009

Conflict Resolution

 Wait-then-cancel
 Startup process waits up to max_standby_delay,

then issues a cancel, backend will then
 immediate ERROR if AccessExclusiveLock request
 defer ERROR until we see a block with a recent LSN

 Pause recovery
 Linkback session

 Connect to primary with dblink and hold open a
serializable transaction, so we never receive any
cleanup records on standby

© 2ndQuadrant Limited 2009

Deferred Buffer Conflicts

 Each proc maintains a small cache (8) of
relations that it may have conflicts with

 If query reads buffer for that relation we check
LSN of buffer to see if it is later than conflict LSN

 When cache overflows, we cancel query for any
relation if buffer is lately modified

 Idle sessions and idle in transaction sessions
never cause buffer conflicts

 Reality is that very active OLTP sites will have
many conflicts and so will require planning

© 2ndQuadrant Limited 2009

Problem #3: Snapshots

 PostgreSQL MVCC requires that we have a
snapshot when we read user tables

 We cannot make sense of tuple xids otherwise
 Options

 Get a snapshot from primary

 Build a snapshot from WAL information

© 2ndQuadrant Limited 2009

Incomplete Information

 BEGIN;
 INSERT ...
 LOCK TABLE ...
 SAVEPOINT s1;
 INSERT ...
 COMMIT;

 (nothing)
 INSERT ...
 (nothing)
 (nothing)
 INSERT ...
 COMMIT ...

© 2ndQuadrant Limited 2009

Locking

 On Standby only locks allowed are
AccessShareLocks. AccessShareLocks only
conflict with AccessExclusiveLocks. Users
cannot cause deadlocks...

 So the only locks we care to track are
AccessExclusiveLocks

 Advisory Locks are allowed on standby, but
advisory locks on primary are not propagated

 Locks are held by Standby process by proxy

© 2ndQuadrant Limited 2009

Catalog Info Cacheing

 Current xlog code does not use relcache
 Queries need relcache
 New relcache usage mode “send_only”:

can publish invalidations but never reads them
 Need to invalidate flat files

© 2ndQuadrant Limited 2009

Unobserved Xids

 Snapshots must contain record of all running
transactions, otherwise we can violate MVCC

 Xids are assigned in sequence, but don't arrive in
order because of block locking

 Xids can be assigned recursively in some cases,
so no theoretical limit on unobserved xids

 Limit recursive assignment with new WAL record
type. Rarely called, though limits number of
unobserved xids to 2* max_connections

© 2ndQuadrant Limited 2009

Subtransaction Marking

 We must store unobserved xids in snapshot
 No room because of subxid cache overflow
 Change logic of XidInMVCCSnapshot so we

look in subxid cache and pg_subtrans
 Now we can fit unobserved xids in snapshot

⇒Can optimise pg_subtrans inserts so that
they never happen at all unless we have > 64
subtransactions on current transaction

© 2ndQuadrant Limited 2009

Atomic SubXids

 Do we need to mark clog at subcommit?
 After much analysis: No
 Re-arrange clog changes so that they all

happen at commit/abort

⇒No new WAL records required!

⇒Optimise clog updates for large numbers
of subtransactions

⇒Avoid need to update clog at subcommit

© 2ndQuadrant Limited 2009

New WAL records

 Recursive Xid Assignment – if ever
 Running Xact Set – 1 per checkpoint
 AccessExclusiveLocks – 1 per lock
 Relcache Invalidation – 1 per invalidation
 Vacuum Cleanup Info – 1 per VACUUM

© 2ndQuadrant Limited 2009

WAL Record Enhancements

 Each WAL record has 4 extra bytes
 No extra space required on 64-bit systems

 Changed WAL records
 No changes to main Insert, Update, Delete paths

 Commit

 Btree Vacuum

© 2ndQuadrant Limited 2009

Performance

 Primary
 < 0.1% impact from

additional WAL

 Subtransactions
substantially improved:
+0-5% typical

 ~Zero impact on
scalability

 No increase in WAL
volume

 Standby
 2% CPU impact, but

we're I/O bound
anyway

 Some additional I/O on
btree index vacuums
(can be tuned away)

 Bgwriter active:
+10-30%

 Queries slightly
slower than normal

© 2ndQuadrant Limited 2009

Recovery Control
 pg_recovery_pause()

pg_recovery_pause_xid()
pg_recovery_pause_timestamp()
or recovery_starts_paused (recovery.conf)

 pg_recovery_continue()
pg_recovery_advance(n)
pg_recovery_stop()

 pg_is_in_recovery()
pg_current_recovery_target()
pg_last_recovered_xid()
pg_last_recovered_xlog_location()
pg_last_recovered_xact_timestamp()








© 2ndQuadrant Limited 2009

Conflicts & Usability

 Conflicts will cause some discussion
 No form of replication or clustering is free from

performance or other side-effects
 First release
 Happy to tweak during beta, or fix in 8.5+

© 2ndQuadrant Limited 2009

Project Overview

 Touches more than 80 files
 More than 10,000 lines
 ~6 man months, including significant testing

from 5 staff in 2ndQuadrant, led by Gianni Ciolli
 18 bugs in code of Nov 1

 Around 50% found by code inspection
 > 30 changes and enhancements as a result of

refactoring, review and discussion

© 2ndQuadrant Limited 2009

Futures

 SQL/MED
 Query routing by design, by workload

 Multiple streaming standby servers
 Each with different missions

 Create a “Hive” of databases
 Sharing data

 Sharing queries

 Loose coupling provides
 Robust bulkheads in Hive to prevent loss of service
 Minimise impact of changes between systems

© 2ndQuadrant Limited 2009

FOSDEM Scorecard

 sync repl >15 
 hot standby 15 
 global restore points 15 
 recovery parallelism 13 
 xlogdump 11 
 WAL compression 10 
 include/exclude objects 7 
 logical log based replication 5 
 dropped table cache 2 

© 2ndQuadrant Limited 2009

Conclusion

 Postgres is quickly becoming the best database
 Keep the dream alive
 Prioritise
 Act with urgency
 Do Big Things

© 2ndQuadrant Limited 2009

PostgreSQL

