2ndQuadrant +*
Replication
Replication
Replication

Simon Riggs

2nd Quadrant
simon@2ndQuadrant.
com

© 2ndQuadrant Limited 2009

2ndQuadrant

Advanced PostgreSQL Professional Services

Replication
Replication

Simon Riggs

2nd Quadrant
simon@2ndQuadrant.
com

© 2ndQuadrant Limited 2009

Topics

* Streaming Replication
* Hot Standby

* Futures

* Scorecard

* Conclusion

© 2ndQuadrant Limited 2009

(@ File-based Log Shipping (8.2/8.3)

PRIMARY
posigres
/wal_buﬁen/
pg xlog
archiver ‘]\
<
\;)
archive
STANDBY
I f/
pg xlog
startu pg standby /
P Flow of WAL

© 2ndQuadrant Limited 2009

(@ Sync Replication [Stream mode]

PRIMARY
’/L postgres * “Intuitive”
/wal_buﬁ”ers d €S Ig n
pg xlog
wal sender

STANDBY

\ A
wal receiver

X

startu
p Flow of WAL

© 2ndQuadrant Limited 2009

(@ Sync Replication [Archiving]

PRIMARY

posigres

/wal_buﬁ”ers

wal sender

pg xlog

STANDBY

\ A
wal receiver

startup

pg xlog

archiver .

© 2ndQuadrant Limited 2009

* Optional
additional
archiving 1in
streaming
mode

archive

Flow of WAL

(@ Sync Replication [As at 1/11]

PRIMARY

3

startup

posigres
/vval_buﬁers
pg xlog
wal sender archiver
STANDBY
wal revceiver archiver

pg xlog

- archive

N—

<
N—

pg_standby K

T

© 2ndQuadrant Limited 2009

archive

Flow of WAL

'@ Sync Replication [File mode]

PRIMARY
P * Starting
/wal_buﬁen/ mo d e
pg xlog
archiver ‘]\
<
\;)
archive
STANDBY
I f/
startu pg standby /
ariup Flow of WAL

© 2ndQuadrant Limited 2009

(@ ync Replication [Switching]

PRIMARY .
postgres ° ArCh|V|ng
' stops at next
/wal_buﬁ”ers IOﬁ SW'tCh
following start
....... , of streaming
wal sender f archiver
~~~~~ <
......... ‘\_/
archive
STANDBY ’
T ’\/
—
pg xlog
startup ..['Pg_standby T Flow of WAL

© 2ndQuadrant Limited 2009



(@ ync Replication [Stream mode]

PRIMARY

posigres

/wal_buﬁ”ers

wal sender

pg xlog

STANDBY

\ A
wal receiver

startup

pg xlog

© 2ndQuadrant Limited 2009

—

Flow of WAL



(@ Hot Standby

PRIMARY .

* Run queries
while still in
recovery

STANDBY
posigres < > User
—
")
| DB
startup T
-

© 2ndQuadrant Limited 2009



Problem #1: Transactions

.
d

. F

8.

ow do we run transactions when we can't
locate new Transactionlds? (Xids)

orian Pflug solved the transaction problem in
3: Read-only transactions never allocate Xids

* Florian's early analysis of these problems made
an eventual solution feasible

© 2ndQuadrant Limited 2009



Problem #2: Conflicts

* Recovery may need to do things like
ALTER TABLE. Standby queries could be
reading the table we wish to alter.

* Recovery needs to clean “old” data out, when
primary system runs HOT or VACUUM. Standby
gueries might need to see data even after it has
been removed

* Recovery may need to drop tablespaces or
databases that we are currently using.

© 2ndQuadrant Limited 2009



Conflict Resolution

* \Wait-then-cancel

- Startup process waits up to max_standby delay,
then issues a cancel, backend will then

* immediate ERROR if AccessExclusivelLock request
* defer ERROR until we see a block with a recent LSN

* Pause recovery
* Linkback session

- Connect to primary with dblink and hold open a
serializable transaction, so we never receive any
cleanup records on standby

© 2ndQuadrant Limited 2009



Deferred Buffer Conflicts

* Each proc maintains a small cache (8) of
relations that it may have conflicts with

* |If query reads buffer for that relation we check
LSN of buffer to see if it is later than conflict LSN

* When cache overflows, we cancel query for any
relation if buffer is lately modified

* |dle sessions and idle In transaction sessions
never cause buffer conflicts

* Reality is that very active OLTP sites will have
many conflicts and so will require planning

© 2ndQuadrant Limited 2009



Problem #3: Snapshots

* PostgreSQL MVCC requires that we have a
snapshot when we read user tables

* We cannot make sense of tuple xids otherwise
* Options

- Get a snapshot from primary

- Build a snapshot from WAL information

© 2ndQuadrant Limited 2009



Incomplete Information

* BEGIN;

* INSERT ...

* LOCK TABLE ...
* SAVEPOINT s1,
* INSERT ...

* COMMIT;

© 2ndQuadrant Limited 2009

* (nothing)

* INSERT ...
* (nothing)

* (nothing)

* INSERT ...
* COMMIT ...



Locking

* On Standby only locks allowed are
AccessSharelLocks. AccessSharelLocks only
conflict with AccessExclusivelLocks. Users
cannot cause deadlocks...

* So the only locks we care to track are
AccessExclusivelocks

* Advisory Locks are allowed on standby, but
advisory locks on primary are not propagated

* Locks are held by Standby process by proxy

© 2ndQuadrant Limited 2009



Catalog Info Cacheing

* Current xlog code does not use relcache
* Queries need relcache

* New relcache usage mode “send_only”:
can publish invalidations but never reads them

* Need to invalidate flat files

© 2ndQuadrant Limited 2009



Unobserved Xids

* Snapshots must contain record of all running
transactions, otherwise we can violate MVCC

* Xids are assigned in sequence, but don't arrive in
order because of block locking

* Xids can be assigned recursively in some cases,
so no theoretical limit on unobserved xids

* Limit recursive assignment with new WAL record
type. Rarely called, though limits number of
unobserved xids to 2* max_connections

© 2ndQuadrant Limited 2009



Subtransaction Marking

* We must store unobserved xids in snapshot
* No room because of subxid cache overflow

* Change logic of XidInMVCCSnapshot so we
look in subxid cache and pg_subtrans

* Now we can fit unobserved xids in snapshot

® =Can optimise pg_subtrans inserts so that

they never happen at all unless we have > 64
subtransactions on current transaction

© 2ndQuadrant Limited 2009



Atomic SubXids

* Do we need to mark clog at subcommit?
* After much analysis: No

* Re-arrange clog changes so that they all
happen at commit/abort

® =No new WAL records required!

® =Optimise clog updates for large numbers
of subtransactions

® =Avoid need to update clog at subcommit

© 2ndQuadrant Limited 2009



New WAL records

* Recursive Xid Assignment — if ever

* Running Xact Set — 1 per checkpoint

* AccessExclusivelocks — 1 per lock

* Relcache Invalidation — 1 per invalidation
* Vacuum Cleanup Info — 1 per VACUUM

© 2ndQuadrant Limited 2009



@ WAL Record Enhancements

* Each WAL record has 4 extra bytes
- No extra space required on 64-bit systems

* Changed WAL records

- No changes to main Insert, Update, Delete paths
- Commit
- Btree Vacuum

© 2ndQuadrant Limited 2009



Performance

* Primary * Standby

- <0.1% impact from - 2% CPU impact, but
additional WAL we're /O bound

- Subtransactions anyway
substantially improved: - Some additional /O on
+0-5% typical btree index vacuums

~ ~Zero impact on (can be tuned away)
scalability - Bgwriter active:

+10-30%

- No increase in WAL
volume - Queries slightly
slower than normal

© 2ndQuadrant Limited 2009



Recovery Control
I * pg_recovery pause()

M pg recovery pause xid()
pg_recovery pause timestamp()
or recovery_starts paused (recovery.conf)

» ° pg_recovery continue()
» pg_recovery advance(n)
B pg recovery stop()

* pg_is_in_recovery()
pg_current _recovery_ target()
pg_last recovered xid()
pg_last recovered xlog location()
g_last _recovered xact timestamp()

© 2ndQuadrant Limited 2009



Conflicts & Usability

* Conflicts will cause some discussion

* No form of replication or clustering is free from
performance or other side-effects

* First release
* Happy to tweak during beta, or fix in 8.5+

© 2ndQuadrant Limited 2009



Project Overview

* Touches more than 80 files
* More than 10,000 lines

* ~6 man months, including significant testing
from 5 staff in 2ndQuadrant, led by Gianni Ciolli

* 18 bugs in code of Nov 1
- Around 50% found by code inspection

* > 30 changes and enhancements as a result of
refactoring, review and discussion

© 2ndQuadrant Limited 2009



Futures

* SQL/MED

- Query routing by design, by workload
* Multiple streaming standby servers
- Each with different missions
* Create a "Hive” of databases

- Sharing data
- Sharing queries

- Loose coupling provides

* Robust bulkheads in Hive to prevent loss of service

~* Minimise impact of changes between systems
© 2ndQuadrant Limited 2009



FOSDEM Scorecard

* sync repl >15
* hot standby 15
* global restore points 15
* recovery parallelism 13
* xlogdump 11
* WAL compression 10
* include/exclude objects I

* logical log based replication 5
* dropped table cache 2

© 2ndQuadrant Limited 2009

X X X € € < X < X



Conclusion

* Postgres is quickly becoming the best database
* Keep the dream alive

* Prioritise

* Act with urgency

* Do Big Things

© 2ndQuadrant Limited 2009



2ndQuadrant

Advanced PostgreSQL Professional Services

© 2ndQuadrant Limited 2009



