Securing
PostgreSQL Applications

Marc Balmer <marc@msys.ch>

Prague PostgreSQL Developer Day 2015

About this presentation

e Aimed at application developers and DBAs. ..

e ...who do client programming using libpq (or a wrapper
around libpq for a language other than C)

e ...who can use PostgreSQL features

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Topics

@ Risks and Possible Attack Vectors
@® Mitigating Database Compromise
® Conclusions

O Colophon

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

The risks

e Data stealing (personal information, credit card details)
e Data manipulation

e Data destruction

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Attack vectors

e SQL-injection
e Direct database access, e.g. as a result of ...

e ...a server break-in (shell access) with limited (non-root)
access

e .. .a server break-in with root-access

(Speaking of Unix-like systems here. . .)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

SQL-injection

Attacker manages to inject SQL, usually using a bug in the
software

Access to the database with all privileges of the logged-in user

Often only one single user for the whole application

e Even more so in DB agnostic applications, e.g. MediaWiki

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Server break-in (non-root)

e Database can be accessed if user credentials are known

e Search in config files for credentials, a careless sysadmin may
leave them world readable

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Server break-in with root access

e You have lost. Game over.

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

SQL-injection

sql = string.format(][[

INSERT INTO person (firstname, lastname, town)
VALUES ('%s', '%s’, '%s')

1.

gui.entry.firstname:GetString|(),
gui.entry.lastname:GetString)(),
gui.entry.town:GetString())

conn:exec(sql)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

No problem with ,,normal” input

local a = 'Marc’
local b = 'Balmer’
local c = 'Basel’

conn:exec(string.format([[

INSERT INTO person (firstname, lastname, town)
VALUES ('%s’, '%s’, '%s')

Il.a, b, c)

INSERT INTO person (firstname, lastname, town)
VALUES ('Marc’, 'Balmer’, 'Basel’)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Never construct an SQL statement in this naive way ...

...an attacker will try to get malicious code into a variable that is
used in an SQL statement.

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Injecting SQL code

local a = 'Marc’
local b = 'Balmer’
local c = <— try to get our own SQL into this

sql = string.format([[

INSERT INTO person (firstname, lastname, town)
VALUES ('%s’, '%s’, '%s')

Ila, b, c)

INSERT INTO person (firstname, lastname, town)
VALUES ('Marc’, 'Balmer’, 'our own SQL’)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Step 1:
Close the string and terminate the original SQL statement

7);

INSERT INTO person (firstname, lastname, town)
VALUES ('Marc’, 'Balmer’, ");)

—');) gives a syntax error

Marc Balmer <marc@msys.ch>

SecuringPostgreSQL Applications

Risks and Possible Attack Vectors

Step 2:
Turn the remainder of the original SQL statement into a
comment

;); -

INSERT INTO person (firstname, lastname, town)
VALUES ('Marc’, 'Balmer’, "’); ——)

— no more syntax error, the second brace is commented out, we
now have room for own SQL between ’); and --)

Marc Balmer <marc@msys.ch>

SecuringPostgreSQL Applications

Risks and Possible Attack Vectors

Step 3:
Add our own SQL code

’); truncate person; --—

INSERT INTO person (firstname, lastname, town)
VALUES ('Marc’, 'Balmer’, ’’); truncate person; ——)

— we can execute arbitrary SQL commands

Marc Balmer <marc@msys.ch>

SecuringPostgreSQL Applications

Risks and Possible Attack Vectors

SQL-injection in practice

ringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

How to prevent SQL-injection

Escape ALL input from ALL sources

... also cookie valies, input of devices etc.
e Use prepared statements

e Use parametrized queries

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Inserting data with escaping

sql = string.format(][[

INSERT INTO person (firstname, lastname, town)
VALUES ('%s', '%s’, '%s')

1.
conn:escapeString(gui.entry.firstname:GetString()),
conn:escapeString(gui.entry.lastname:GetString()),
conn:escapeString(gui.entry.town:GetString()))

conn:exec(sql)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Escaping prevents SQL-injection

local a = 'Steve’

local b = 'B’

local c = ""); truncate person; ——"

conn:exec(string.format([[

INSERT INTO person (firstname, lastname, town)

VALUES ('%s’, '%s’, '%s')

conn:escapeString(a), conn:escapeString(b), conn:escapeString(c))

INSERT INTO person (firstname, lastname, town)
VALUES ('Steve’, 'B.’, '"); truncate person; ——’)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Inserting data with prepared statements, preparation step

conn:prepare(’safe_entry’, ||
INSERT INTO person (firstname, lastname, town)
VALUES (1, $2, $3)

L)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Inserting data with prepared statements, execution step

conn:execPrepared('safe_entry’,
gui.entry.firstname:GetString(),
gui.entry.lastname:GetString)(),
gui.entry.town:GetString())

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Using parametrized queries

conn:execParams([[

INSERT INTO person (firstname, lastname, town)

VALUES ($1, $2, $3)

]], gui.entry.firstname:GetString|(),
gui.entry.lastname:GetString)(),
gui.entry.town:GetString())

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

Deny database administrator logins

conn = pgsql.connectdb(...)
res = conn:exec('select rolsuper from pg_roles where rolname = current_user’)

if res:ntuples() != 1 then

os.exit(1)
end
if res:getvalue(1, 1) == "t’ then
os.exit(2) —— DB super user
end

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors

SQL must be composed carefully

Whenever SQL is composed, extra care is needed

Numbers can usually safely be converted

ALL string input must be sanitized

Even when coming from sources we assume safe at first sight
(e.g. barcode scanners, cookies, etc.)

If you can, prevent DBA logins via the application

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

PostgreSQL Cluster Anatomy

A PostgreSQL cluster. ..

e is a collection of databases

e is a collection of roles which can or can not login to the
cluster

e has a config file, pg_hba.conf, that defines who can access the
database using which authentication methods

e Multiple clusters can safely co-exist on the same machine

Marc Balmer <marc@msys.ch>

SecuringPostgreSQL Applications

Mitigating Database Compromise

What is a PostgreSQL database?

Resides in a cluster

All roles in the cluster can connect to the database

Can contain schemas (the public schema is the default and
accessible by all users (roles) by default)

Is owned by a certain user (role)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

What are roles?

e Can be defined to be able to login or not
e Can only access the public schema by default

e Can be granted fine-grained access rights (or have them
revoked)

e Login roles can use different methods to authenticate
themselves, see pg_hba.conf

e A role’s rights can be granted to (or revoked from) another
roles (roles become groups)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

What are schemas?

A named collection of database objects like e.g. tables, views,
functions etc. that resides itself in a database

e Access objects in a schema with a schemaname.objectname
prefix or set the path accordingly

e Schemas esemble directories in a filesystems

e To access objects in a schema, a role must have USAGE
privilege on the schema AND proper access privilege on the
object in the schema

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Security at the right layer

e Many applications handle security at the application layer, use
only one database login

e Software can have bugs. What if the application gets
compromised?

o Full access to the application database by the intruder!

Marc Balmer <marc@msys.ch>

SecuringPostgreSQL Applications

Mitigating Database Compromise

Mitigating the effects of an unwanted database access

e From now on, we assume our software has a bug that lets an
attacker access the database

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Two types of applications

Applications with real users, e.g. a ledger system or a
customer relationship management system

Each user has his own login role

Application with anonymous users, e.g. an online ticket
booking system

Roles per user are not always possible/feasible

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Security at the database layer

PostgreSQL has a fine grained security system

Define security at the database layer

Define ,,model” roles with security privileges for distinct areas
of an application

GRANT the ,,model role” to the real users

Don't let a database administrator account log in

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

The principle of the least power

o Give roles as little privileges as ever possible

e Truly understand what pg_hba.conf can do for your, limit
access to the database as close as possible

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors Mitigating Database Compromise Conclusions

Partition the database using schemas, model roles

e Define schemas for application areas, extensions etc.

o Create roles that must not login for each part of an
application area, e.g. a read-only user, a normal user, and an
administrator

e We call such roles ,,model roles” because they serve as a
model for the database access privileges

e The model roles can be GRANTED to the real (login) roles

e Consider not using the public scheme at all

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Use the security mechanism that PostgreSQL allows

e Taylor your model roles with the fine grain security
PostgreSQL allows you
e Consider not only the obvious access rights like SELECT,

UPDATE, INSERT, DELETE etc. but also concepts like
column level security

SecuringPostgreSQL Applications

Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Database application with anonymous users

e Require a database login role for the application, not the user

e That role should be practically useless for an attacker

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Risks and Possible Attack Vectors Mitigating Database Compromise Conclusions

Prevent data stealing

e Make it impossible to list the contents of a table, allow only
access to the data THIS anonymous user has created.

e How should that work?
e Don't grant SELECT rights to the application’s role

e Use a function to access data, use a random string or
cryptographic hash, e.g. stored in a browser cookie, to retrieve
the data.

e That function is defined to run with the privileges of the
function owner (SECURITY DEFINER) (a model role with
slightly more privileges than the application role) and can thus
SELECT on the data table

e Don't forget to set the search path

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Encrypt if you must

e Very sensity data can be encrypted in the database in way
that it only can be retrieved if you know the key and one or
more secrets (,,arcanum”)

e Create a secure hash value over the key and secret(s)
e Use that hash to encrypt the data
o Create a second hash over the key

e Use the second hash as the key to database

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Mirror user privileges in the application

res = conn:exec([|
SELECT groname FROM pg_group
WHERE (
SELECT usesysid FROM pg_user
WHERE usename = current_user
) = ANY (grolist)
1l

for n = 1, res:ntuples() do
—— use role membership to adjust Ul
—— has_role(res:getvalue(n, 1))

end

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Mirror user privileges in the application

e Giving access to an application area (or module etc.)
effectively means to GANT the model role

e Removing access means to REVOKE the model role

o |f designed properly, the user interface will reflect this

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Mitigating Database Compromise

Hardening the login even more

e To make sure only authorized users can access an application,
techniques like OTP (OATH) can be used, but only at the
application level

e This only prevents a login, but not the situation where the
database can be access due to a bug

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Conclusions

Secure the Application

e Don't construct SQL in memory when external data of any
kind is involved

e Use parametrized queries or prepared statements instead

o At the very least, escape all data from external sources (user
input, scanner input, etc.)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Conclusions

Secure the Database

Use schemas to partition an application

Define model roles with fine grained security settings

e Use per-user login roles

Grant only those model roles to users that they need

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Conclusions

Secure the PostgreSQL Cluster

e Limit super user logins

e Understand how pg_hba.conf works

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Colophon

Source Code

The Lua interface to PostgreSQL
https://github.com/mbalmer/luapgsql/

The JSON encoder/decoder for Lua
https://github.com/mbalmer/luajson/

(There are more useful modules available at
https://githup.com/mbalmer/)

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

https://github.com/mbalmer/luapgsql/
https://github.com/mbalmer/luajson/
https://githup.com/mbalmer/

Risks and Possible Attack Vectors Mitigating Database Compromise Conclusions Colophon

About the Author

After working for Atari Corp. in Switzerland where he was responsible for
Unix and Transputer systems, Marc Balmer founded his company micro
systems in 1990 which first specialised in real-time operating systems and
later Unix. During his studies at the University of Basel, he worked as a
part time Unix system administrator.

He led the IT-research department of a large Swiss insurance company
and he was a lecturor and member of the board of Hyperwerk, an
Institute of the Basel University of Applied Sciences.

Today he fully concentrates on micro systems, which provides custom
programming and IT outsourcing services mostly in the Unix environment.
Marc Balmer is an active NetBSD developer; he was chair of the 2005
EuroBSDCon conference that was held at the University of Basel and was
a member of the program committe of this conference series many times.
He is one of the main organizer of the Swiss Postgres Conference

In his spare time he likes to travel, to photograph and to take rides on his
motorbike. He is a licensed radioamateur with the call sign HB9SSB.

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

Colophon

Contact Information

Marc Balmer
micro systems
Landstrasse 66
CH-5073 Gipf-Oberfrick

Switzerland

E-mail marc@msys.ch, mbalmer@NetBSD.org,
m®x.org

Company web http://wuw.msys.ch/

Personal web http://www.vnode.ch/

SecuringPostgreSQL Applications Marc Balmer <marc@msys.ch>

http://www.msys.ch/
http://www.vnode.ch/

	Risks and Possible Attack Vectors
	Mitigating Database Compromise
	Conclusions
	Colophon

